VeriFast: Imperative Programs as Proofs

Bart Jacobs*, Jan Smans, and Frank Piessens

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{bart. jacobs, jan.smans, frank.piessens}@cs.kuleuven.be

Abstract. We propose an approach for the verification of imperative
programs based on the tool-supported, interactive insertion of annota-
tions into the source code. Annotations include routine preconditions
and postconditions and loop invariants in a form of separation logic, as
well as inductive datatype definitions and recursive function and pred-
icate definitions to enable rich specifications. To enable verification of
these rich specifications, annotations also include lemma routines, which
are like ordinary routines of the programming language, except that it is
checked that they do not have side-effects and that they terminate. Re-
cursive lemma routines serve as inductive proofs that their precondition
implies their postcondition.

Verification proceeds by symbolic execution, using a separation logic-
based representation of memory, and using first-order terms constrained
by a first-order theory as symbolic data values. Data value queries are
delegated to an SMT solver; since memory framing issues are eliminated
from these queries and only well-behaved quantification is used, SMT
solver queries perform much better than in verification condition based
approaches.

Annotation insertion is supported by an integrated development envi-
ronment where the user may invoke the verification tool. If verification
fails, the user can step through the symbolic execution trace and inspect
the symbolic state at each step. Since verification typically takes less
than a second, this enables an efficient iterative annotate-and-verify pro-
cess. Furthermore, it is hoped that by offering proof technology in a form
recognizable to programmers, the approach brings interactive program
verification to a wider audience.

1 Introduction

In recent years, program verification technology has progressed dramatically,
particularly in the area of the abstract specification of a routine’s side-effects
(known as the heap framing problem), with separation logic [16] emerging as
the most promising approach to this problem. More recently still, researchers
have built on separation logic to improve the performance and automation of
the verification process, by replacing a pure reliance on an SMT solver’s rather
uninformed quantifier instantiation logic with symbolic execution [4], with a
separation logic-based symbolic representation of memory.

* Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

One of the remaining frontiers of program verification is the integration of this
symbolic execution approach with the convenient specification and verification of
functional correctness properties, involving not just the shape of data structures,
but their contents as well. Existing approaches in this area are either by encoding
such properties in first-order logic, to make them acceptable to SMT solvers, but
again involving heavy use of potentially ill-behaving quantifiers; or by translating
the proof obligation into the input language of an interactive proof assistant,
creating a disconnect between the code and the proof.

‘We propose a novel approach to this problem: we allow the programmer to de-
fine inductive datatypes and structural recursive functions over these datatypes
inside annotations in the source code, and to inductively prove lemmas about
these types and functions by writing lemma routines in the target programming
language itself.

The datatypes and functions are still axiomatized using quantifiers, and
queries about them are still passed to an SMT solver, but by not including
exhaustiveness axioms, the SMT solver is kept in check, and queries perform
well, while at the same time achieving a very expressive specification language.

The contributions of this paper are as follows:

— We propose a novel verification approach based on separation logic [16],
symbolic execution [4] and an SMT solver [8] where simple proof steps can
be directly inserted into the source code. Rich properties can be specified
via inductive data types and fixpoint functions.

— We propose lemma routines, a way of writing proofs as imperative programs:
the contract of the lemma routine corresponds to the lemma itself, its body is
the proof and a call to a lemma routine corresponds to applying the lemma.

— The VeriFast program verifier for C and Java, an implementation of the
above contributions that (1) supports symbolic debugging of specifications
and implementations in an IDE and (2) allows for an interactive annotation
experience due to the speed and predictability of the verifier.

The remainder of this paper is structured as follows. In Section 2, we describe
the building blocks of our verification approach: separation logic, symbolic exe-
cution and support for rich specifications via inductive data types and fixpoints.
Section 3 extends the specification language with lemma routines. Symbolic de-
bugging of proofs in the VeriFast IDE is then discussed in Section 4. Finally, we
compare with related work and conclude in Sections 5 and 6.

2 Building Blocks of the Verification Approach

This section describes the building blocks of our verification approach: separation
logic, the combination of symbolic execution and an SMT solver, and supporting
rich specifications via inductive data types and fixpoints.

2.1 Separation Logic

The core of our specification language is a form of separation logic. Separation
logic [16] is an extension of classical Hoare logic with two new assertions, points-
to and separating conjunction. A points-to assertion, e;— f +— eo, states that the
heap contains a memory location at address &e;— f with value es. A separating
conjunction, P x @, states that P and @ hold for disjoint parts of the heap.
Separation logic allows for local reasoning via the frame rule:

{PciQ}
{Px R}C{Q * R}

Informally, the frame rule states that the proof for C' can ignore the part of the
heap that is not accessed by C (here R).

struct node { int value; struct node x next; };

predicate node(struct node x n,int value, struct node * next) =

n—wvalue — value x n—next — next * malloc_block_node(n);

struct node * create_node(int value, struct node * next)
requires emp;

ensures node(result, value, next);

{

struct node * n = malloc(sizeof (struct node));
if (n == 0) abort();

n—value = value; n—next = next;

close node(n, value, next);

return n;

}

Fig. 1. Example demonstrating predicates, contracts and ghost statements.

Let’s look at the C program of Figure 1. The program consists of the decla-
ration of the struct node and a function for creating new nodes, together with
separation logic annotations that describe the behavior of the program. All anno-
tations in this paper are highlighted by a gray background. The first annotation
we encounter is a predicate declaration, node. The body of the predicate states
that the location at address &n—walue can be read and written and that the
current value of the location is wvalue. Similarly, n—mnext points to next. The
assertion malloc_block_node(n) is a predicate assertion that denotes permission
to free n. The definition of malloc_block_-node(n) is not visible in this context. In
general, a predicate assertion can be considered a shorthand for the predicate’s
body with actual parameters substituted for the formal ones.

Each C function is given a corresponding contract, consisting of a precondi-
tion P and a postcondition Q). The goal of the verifier is to check that execution of
the function’s body results in a state satisfying @, provided the execution started
in a state satisfying P. In addition, the verifier checks that the function’s body
does not perform illegal operations such as dereferencing the 0 pointer. The pre-
condition of create_node is emp, denoting that the function will not access exist-
ing heap locations and that no restrictions apply to the parameters. create_node’s
postcondition consists of the predicate assertion node(result, value, next). Recall
that predicate assertions are simply shorthands for the predicate’s body.

Our verifier does not fold or unfold predicates by itself, but instead devel-
opers must explicitly perform such proof steps by inserting ghost commands
into the source code. A ghost command is an operation that is ignored during
concrete execution, but affects verification. The close statement in the body of
create_node is an example of such a ghost command that folds the predicate
node. In particular, this command replaces the body of the predicate by an ap-
plication of node. The converse operation that unfolds a predicate is called open
and will be shown in Figure 3.

2.2 Symbolic Execution

We verify whether a program satisfies its specification via symbolic execution
along the lines of Berdine et al. [4]. Contrary to [4], we use an SMT solver [8] to
reason about pure assertions.

Symbolic State A symbolic state is a triple (h, s, IT), consisting of a symbolic
heap h, a symbolic store s and a path condition I7. The symbolic heap is a
multiset of heap chunks, where each chunk consists of a predicate name ! and a
list of first-order terms (one for each predicate parameter). The symbolic store
is a partial function from variable names to terms. Finally, the path condition
is a set of first-order formulas that describe restrictions over the logical symbols
used in the symbolic state that hold on the current execution path.

Symbolic Execution The rules for symbolic execution are defined in continua-
tion-passing-style in Figure 2. In particular, the continuation) represents the
work that remains to be done on the current path. Note that for brevity, only
some of the rules are shown.

The rules for produce and consume represent respectively assuming and prov-
ing a separation logic assertion. For example, producing a (spatial) points-to
assertion e— f — ?x amounts to adding a new field chunk to the heap whose
value is a fresh first-order symbol and binding z to that symbol. (More generally,
a question mark preceding an variable in an assertion indicates a binding occur-
rence of the variable.) Producing a pure assertion, such as e; = es, corresponds

! The VeriFast implementation uses a logical term instead of a literal predicate name
in order to support higher-order predicates.

to adding the equivalent formula to the path condition. Producing a conditional
assertion e; = eoT A7 : As creates two branches in the symbolic execution, where
the condition is added to II and A; is produced on the first branch, and the
negation of the condition is added to IT and A, is produced on the other branch.
Note that a particular branch is not reachable if the path condition is incon-
sistent. The rules check reachability by checking consistency when adding an
assumption.

produce(h, s, I1,e—f — 7x,Q) where e is of type struct S x =
let o = fresh(h, s, IT) in Q(hW{S_f([e]s,0)}, slx := o], II)

produce(h, s, I, e1 = e2,Q) = II smr —e1 = e2]s = Q(h, s, I U {[e1 = e2]s}

produce(h, s, IT, A1 * A2,Q) =
produce(h, s, IT, A1, (Ah, s, II. produce(h, s, I1, A2, Q)))

produce(h, s, IT,e1 = e27A1 : A2,Q) =
(I Ysmr —er = e2]s = produce(h, s, [T U{Je1 = e2]s}, A1,Q)) A
(IT Ysm [er = ez]s = produce(h, s, IT U {=[e1 = e2]s}, A2, Q))

consume(h, s, II,e—f — 7x,Q) where e is of type struct S * =
E|t1,t2,hl. h = {S,f(tl,tg)} Wh' AIT FsmT 61 = [[e]]s A Q(h/,s[m = tz],H)

consume(h, s, I, e1 = e2,Q) = II Fsur [e1 = e2]s A Q(h, s, IT)

consume(h, s, IT, A1 x A2,Q) =
consume(h, s, IT, A1, (Ah, s, I1. consume(h, s, I1, A2, Q)))

consume(h, s, IT,e1 = e27A1 : A2,Q) =
(IT Hsmr —[er = e2]s = consume(h, s, IT U {[e1 = e2]s}, A1,Q)) A
(II Ysmr [er = e2]s = consume(h, s, IT U {—]er = e2]s}, A2, Q))

verify(h, s, I1, f(e), Q) where f(x) requires A;; ensures Az; =
consume(h, {(z, [e]s)}, I, A1, (Ah, 8", I1.
produce(h, ', IT, Az, (Ah, -, IT. Q(h, s, IT)))))

valid(f(z) requires A;; ensures Ay; {5 }) =
let o = fresh(0,0,0) in
produce(®, {(z,0)},0, A1, (Ah, s, I1.
verify(h, {(z,0)}, I1,’s, (A\h, _, II.
consume(h, s, I1, Az, (Ah, -, . h =10))))))

Fig. 2. Symbolic execution

Consumption is the inverse operation. For example, consumption of a points-
to assertion looks for a heap chunk that matches the assertion. If none exists,
consumption fails; otherwise, the chunk is removed.

The role of production and consumption of assertions is illustrated in the ver-
ification rule for function calls (verify), where the precondition is consumed and

the postcondition is produced. Notice that variables bound in the precondition
are in scope in the postcondition.

Finally, a function declaration is valid if after producing the precondition
with arbitrary values for the function parameters and symbolically executing
the function’s body in the resulting symbolic state, the postcondition can suc-
cessfully be consumed. The final continuation (Ah,_, _. h = (}) enforces the ab-
sence of memory leaks by checking that the heap is empty after consuming the
postcondition. A program is valid if all function declarations are valid.

2.3 Inductive Data Types

To allow for rich specifications, we support inductive data types in our anno-
tation language. As an example, consider the code of Figure 3 with functions
for creating and adding elements to a linked list. The first annotation in the
program is the inductive data type list which is defined in the traditional way:
a list is either empty or the combination of a head element? and a tail.

The inductive data type is used in the predicates Iseg and list. lseg(nl, n2, vs)
holds if there exists a chain of next pointers starting at n! and ending in n2,
where the values in the nodes along the chain correspond to ws. Similarly,
list(l,vs) holds if [is a pointer into a list data structure that contains vs as
elements. Note that the definitions of the above predicates need not be visible
to client code.

The contracts of create_list and add_to_front are defined in terms of the
predicate list. The former function has no precondition and creates a empty
list, while the latter adds a new element z to the front of the existing list.
The parameter ?vs in the precondition of add_to_front represents an existential
variable that is bound at the time the function is called.

Encoding Each constructor of an inductive data type is encoded as a function
symbol in the SMT solver. Values of an inductive data type are then encoded
as applications of the corresponding function. For example, the inductive data
type list has two corresponding functions®:

nil : inductive
cons : int X inductive — inductive

Inductive data type constructors satisfy (1) disjointness, (2) injectiveness, and
(3) exhaustiveness. Property (1) states that the ranges of the constructors are
disjoint. Property (2) states that the constructors are injective. These two prop-
erties are encoded as axioms in the SMT solver. Exhaustiveness, on the other
hand, is not available to the SMT solver to prevent arbitrary case splits. VeriFast
only performs the case splits called for explicitly in the source code using switch
statements.

2 The inductive data type in Figure 3 specifically uses int as the element type. How-
ever, the VeriFast implementation supports generic inductive definitions. For sim-
plicity, we use the non-generic version in this paper.

3 We use the same SMT solver type for all inductive data types.

inductive list = nil | cons(int, list);
struct list { struct node = first; struct node x last; };

predicate lseg(struct node * nl,struct node * n2,list vs) =
nl == n2 ? vs == nil : node(nl,?h, Tnext) *x lseg(next, n2, t) * vs == cons(h, t);
predicate list(struct list * [, list vs) =

l—first —?fn x l—last —?In * lseg(fn, In, vs) * node(In, _, _) * malloc_block _list(1);

void * create_list()

requires emp; '
e Bt) void add,to,ﬁlﬂont(struct list = 1,int)
requires list(l, 7vs);

{
struct list x| = ensures list(l, cons(z, vs));
malloc(sizeof (struct list)); {
if (1 ==0) abort(); open list(l, vs);

struct node xn =
create_node (0, 0);
l—first = n; l—last = n;

struct node *n =
create_node(x, l— first);

’ l—first = n;

close Iseg(n, n, nil); close list(l, cons(z, vs));

close list(l, nil); }

return /;

Fig. 3. Example demonstrating inductive data types.

2.4 Fixpoints

In addition to inductive data types, our specification language also includes
fixpoint functions. A fixpoint function is a function with at least one argument
of an inductive type. The body of a fixpoint function must be a switch statement
over one of these arguments, called its inductive argument. The function length
in Figure 4 is an example of a fixpoint that computes the length of an inductively
defined list. To ensure that fixpoints are well-defined, the body of a fixpoint f
can use another fixpoint g only if g appears before f in the program text or if g
equals f and one of the components of the inductive argument is used in the place
of that argument. The fixpoint length is used in the contracts of list_length and
list _length_helper to relate the state of the list to the result of those functions.

Encoding Each fixpoint function is encoded as a function symbol in the SMT
solver. Applications of fixpoints are encoded as applications of the corresponding
function. For each case in the switch statement in the body of the fixpoint
function, an axiom is generated that enables the solver to “compute” the value
of the fixpoint for the corresponding case. For example, two axioms are generated

for the fixpoint length:

length(nil) =0
Vh,t e {length(cons(h,t))} length(cons(h,t)) = 1+ length(t)

The expression {length(cons(h,t))} represents a trigger [9] that ensures that the
axiom is well-behaved.
int list_length_helper
(struct node * nl,struct node * n2)

requires Ilseg(nl,n2, 7vs);

ensures lseg(nl,n2, vs) * result == length(vs);

fixpoint int length(list 1) { cjpren Bl o RlE
if (n1 == n2) return 0;
switch(l) { else return 1 + list_length_helper(nl—next);
case nil : return 0; close Iseg(ni,n2,vs);
case cons(h,t) : }

return 1+ length(t);
int list_length(struct list * 1)
requires list(l, 7vs);

ensures list(l, vs) * result == length(vs);

open list(l, vs);
return list_length_helper(1— first, l—last);
close list(l, vs);

Fig. 4. Example demonstrating fixpoints.

Note that our specification library already includes several inductive defini-
tions and fixpoints that can be reused in many applications.

Quantifiers Our specification language does not include quantifiers. The main
reason for avoiding general quantifiers (and only internally generating quantifiers
for fixpoints and inductive definitions) is that they lead to poor performance.
However, certain forms of quantification can be encoded easily using fixpoints
or recursive predicates. For example, given the predicate forall defined below,
separation logic’s iterated star over a list ®,¢; p(x) can be written as forall(l, p),
meaning p(z) holds separately for each element x of list [.

predicate forall{a)(list{c) [, predicate(a) p) =
switch(l) {
case nil : return true;
case cons(h,t) : return p(h) x forall(t, p);

b

Here « is a type parameter and p ranges over predicates with one argument of
type a, making forall a higher-order predicate. Note that forall must be folded
and unfolded explicitly using ghost commands.

3 Programs as Proofs

The verification approach described in the previous section lacks the power to
prove certain properties. For example, the property that the length of an induc-
tively defined list is never negative is crucial for proving that the assert statement
in my_function never fails:

void my_function(struct list = 1)
requires list(l, 7vs); ensures list(l, vs);
{ int len = list_length(l); assert(0 < len); }

However, as it stands there is no way to prove this property. In particular, the
SMT solver cannot deduce the property as it does not perform induction and
furthermore it does not have access to the exhaustiveness property.

To allow developers to prove properties such as the one described above, we
introduce lemma routines, a way of writing theorems and proofs as C functions
directly in the source code. A lemma routine is a C function annotated with
the keyword lemma. The contract of the function is a theorem stating that the
precondition implies the postcondition for all possible values of the function’s pa-
rameters. For example, the lemma routine length_nonnegative of Figure 5 states
that the length of an inductively defined list is never negative.

lemma void length_nonnegative(list 1)

requires true;
void my_function(struct list * 1)
ensures 0 < length(l); .)
requires list(l, 7vs);

{ ensures list(l, vs);
switch(?) { (
case nil : break; int len = list_length(l);
case cons(h,t) : length_nonnegative(vs);
length_nonnegative(t); break; assert(0 < len);
}
}

Fig. 5. Example demonstrating pure lemma functions.

The body of a lemma routine represents a proof of the theorem. For the proof
to be valid, the body must satisfy certain restrictions. First of all, the body must

not affect the concrete state; specifically, it must not perform field updates or
call regular C functions. Secondly, execution of the body must terminate. We
enforce termination by disallowing loops and by restricting what lemmas the
body can call. More specifically, a lemma routine = can call a lemma routine y
provided y appears before x in the program text or x equals y. If the lemma
performs a recursive call (i.e. equals y), then one of the following restrictions
must hold:

1. The recursive call decreases the size of the heap. More specifically, after
consuming the precondition of the recursive call, a field chunk must remain
in the heap.

2. The recursive call decreases the size of an inductive parameter. More specifi-
cally, the body of the lemma is a switch statement over an inductive param-
eter, and one of the components of the inductive parameter is used in the
place of the inductive argument in the recursive call.

3. The recursive call decreases the derivation depth of the first conjunct of
the precondition. More specifically, the body of the lemma is not a switch
statement, and the first chunk consumed by the precondition of the recursive
call was obtained by unfolding the first chunk produced by the precondition
of the lemma.

The proof of length_nonnegative is by induction on the structure of the list .
The recursive call in the proof is allowed because it is applied to a component of
[(restriction 2 described above). Note that checking the proof simply consists of
symbolically executing the lemma routine as a normal C function and checking
that the additional restrictions described above are satisfied. Also, the proof goes
through because of the SMT solver’s built-in theory of linear arithmetic.

A call of a lemma routine corresponds to an application of the theorem for
the arguments of the call. For example, the body of my_function in Figure 5
calls length_nonnegative with argument wvs, thereby instantiating the theorem
for vs. Since len equals length(vs), the verifier can prove the assert statement
never fails. Note the lemma routine call is a ghost command that does not affect
the execution of the actual C program. Moreover, from the point of view of the
caller, the lemma routine is just another function whose precondition must be
established and whose postcondition can be assumed.

The contract of length_nonnegative contains only pure assertions. However,
lemma routine contracts are allowed to use spatial assertions, as illustrated by the
lemmas distinct_nodes and add _lemma of Figure 6. The former lemma states that
having two node predicates in the symbolic heap implies that the node pointers
themselves are different. The latter lemma states that a heap containing a list
segment from nl to n2, a node object at n2 with next pointer n3 and a node
at nd is equivalent to a heap containing just a list segment from n! to n3 and a
node at n3. The proof of the latter lemma runs by induction on the size of the
heap. add_lemma is needed to prove correctness of the C function add_to_back
in Figure 6.

fixpoint list add(list I,int x) {
switch(l) {
case nil : return cons(z, nil);

case cons(h,t) : return cons(h, add(t,z));

lemma void distinct_nodes(struct node * nl,struct node * n2)
requires node(nl,?nlv,?nin) * node(n2, 7n2v, 7n2n);

ensures node(nl,niv,nin) * node(n2, n2v, n2n) * nl # n2;

open node(nl,nlv,nin); open node(n2,n2v,n2n);

close node(nl1,niv,nin); close node(n2,n2v,n2n);

lemma void add_lemma(struct node * nl)
requires lseg(nl,?n2,7vs) *x node(n2, ?v, 7nd) * node(ns, -, -);

ensures lseg(nl,n3, add(vs,v)) * node(n3, , _);

distinct_nodes(n2,n3); open lseg(ni,_, _);

if (n1 ==n2) {
close Iseg(n3, n3, nil);

} else {
distinct_nodes(n1,n8); open node(nl,?nlv,?nin);
add_lemma(nl—mnext); close node(nl,nlv,nin);

}

close lseg(nl,n2, add(vs, v));

}

void add_to_back(struct list *[,int z)
requires list(l, ?vs); ensures list(l, add(vs,));

open list(l, vs);
struct node * n = create_node(0,0); struct node * nl = l—last;
open node(nl, _, _); nl—next = n; nl—value = x; close node(nl,z,n);

l—last = n; add_lemma(l—first); close list(l, add(vs, z));

}

Fig. 6. Example demonstrating spatial lemma functions

Lemmas can play the role of public invariants [15]. In particular, a lemma
routine in a header file represents a restriction for the implementor of that header
file, and an assumption for client code.

4 Symbolic Debugging with VeriFast

The verification approach described above has been implemented in a verifier
prototype for C and Java called VeriFast. Builds for Windows, Mac and Linux
are available at http://www.cs.kuleuven.be/~bartj/verifast.

4.1 Symbolic Debugging

The combination of an integrated development environment (IDE) that supports
symbolic debugging and fast feedback on verification attempts leads to an in-
teractive specification and verification experience. The IDE, shown in Figure 7,
displays not only the code itself, but also the contents of the symbolic state at
each step to allow developers to debug failed verification attempts. In particular,
the box on the bottom left shows all intermediate symbolic states encountered
during symbolic execution of the program. The user can select a symbolic state,
and inspect the symbolic store (top right), the chunks in the symbolic heap
(bottom right) and the path condition (bottom center).

File Edit View Verify Help
= X SO SN =SB Cannot prove condition.

Locals
A' currentThread =currentThread
len=lend
nl=nl
nin=next
| |niv=h
- n2=n2
VS=VS
len = list_length helper (nl—}next, n2);
len = len + 2:
close node (nl, nlv, nin): i
4 I‘ m | v
Steps + | | Assumptions Heap chunks
Produdng‘asserﬁon (ot (=n1n2)) Iseg(next, n2, t)
Producing assertion (= vs (cons ({intbox) h) £)) malloc_black_nade(n1)
|E| (not (=n1n2)) node_next(ni, next)
B Executing statement (=len {length t)) node_value(n1, h)

Consuming assertion

Fig. 7. The VeriFast IDE.

VeriFast has been used to prove correctness of a number of C and Java
programs, including a small chat server, a composite design pattern [13], a kernel-
like program illustrating VeriFast’s support for unloadable modules and fine-
grained concurrent algorithms. All verified programs are included in the Verifast
distribution. Table 1 shows a number of verified programs.

program ‘ total # lines ‘ # annotation lines ‘ time taken (seconds)
chat server 242 114 0.08
linked list and iterator 332 194 0.09
composite 345 263 0.09
JavaCard applet 340 95 0.51
GameServer 383 148 0.23

Table 1. Overview of a number of programs verified using VeriFast.

4.2 Automation

VeriFast supports a number of techniques to automate proofs: auto lemmas and
automatic folding and unfolding of predicates.

Auto lemmas Pure lemmas (i.e. lemmas whose contract does not contain spa-
tial assertions) can be annotated with the keyword auto. Such lemmas are ax-
iomatized in the theorem prover as Vzq,...,z, ¢ P = @, where x1,...x, are
the lemma’s parameters, and P and @ are respectively its pre and postcondi-
tion. Auto lemmas are applied automatically by the theorem prover and need
not be called explicitly by the developer. The lemma length_nonnegative of Fig-
ure 5 is an example of a pure lemma that can be automated. Note: auto lemmas
are intended for use by experts only; inappropriate use can cause SMT solver
non-termination.

Automatic folding and unfolding When, during consumption, a chunk is not
found, and the corresponding predicate is marked specially, VeriFast considers
auto-folding and auto-unfolding. Specifically, it looks for a chunk in the heap
that contains the missing chunk, or one that is contained by the missing chunk.
In the former case, it will perform an unfold; in the latter case, a fold. Note that
if the fold fails, or the chunk is still not found, no backtracking is performed,
so performance and diagnosability are not adversely affected. The automatic
fold and unfold operations end up in the trace and are therefore visible to the
developer inspecting a failed proof attempt. Automatic folding and unfolding
reduces the number of open and close statements needed for the examples in
this paper from 22 to 8.

4.3 Teaching

VeriFast has been used in courses on software engineering and program verifi-
cation at K.U.Leuven and ETH Ziirich. A tutorial on VeriFast covering design

by contract, basic separation logic, loop invariants, predicates, inductive data
types, fixpoints, lemmas, overflow checking, function pointers, higher-order pred-
icates, predicate families, fractional permissions and concurrency is available at
http://www.cs.kuleuven.be/~bartj/verifast.

5 Related Work

To the best of our knowledge, VeriFast is the first tool that enables proofs of
rich properties of real programs through source code annotations.

Existing verification tools that take real program source files as input are
VCC [7] and Frama-C [2], taking C sources; ESC-Java [11], KeY [3], Jahob
[18], and jStar [10], taking Java sources; and Spec# [1], taking C# sources. Of
these tools, jStar is the only one that operates using symbolic execution with
a separation logic representation of memory. The other tools are based either
on Dijkstra’s weakest preconditions, treating the heap as an array-valued global
variable (VCC, Frama-C, ESC-Java, and Spec#), or on a combination of weakest
preconditions and an interactive proof assistant (KeY and Jahob).

jStar’s verification approach is in many ways similar to that of VeriFast. A
major difference is that jStar attempts to infer loop invariants through abstrac-
tion, whereas VeriFast requires loop invariants to be specified explicitly. jStar’s
abstraction algorithm is driven by user-specified rules, which require significant
expertise to author, and whose soundness is not checked by the tool. In fact, jS-
tar does not include any mechanism for performing manual proofs. Furthermore,
diagnosing failed verification attempts in jStar is significantly more challenging
than in VeriFast due to the reliance on backtracking search.

The weakest preconditions-based approach generates verification conditions
(VCs) in first-order logic and sends them to an SMT solver such as Simplify or
Z3. This approach suffers from poor performance and predictability, due mainly
to the large number of universally quantified premises included in the VCs to
deal with the framing of heap effects; the performance of SMT solvers on such
queries varies greatly. The situation gets worse if one attempts to express rich
properties in these systems, since, due to the absence of inductive datatypes or
fixpoint functions, this requires quantification over e.g. the indices of an array
or the elements of a set of graph nodes.

To overcome these limitations, KeY and Jahob provide the option of falling
back to an interactive proof development mode. In KeY, program proofs in
dynamic logic can be constructed graphically using a special-purpose GUI; how-
ever, these proofs do not become part of the source code. In Jahob, one can
prove lemmas in Isabelle or Coq. This suffers from the problem that these tools
are generic proof assistants and are not optimized for proving separation logic
properties of imperative programs.

Ynot [6] is a powerful system for separation logic-based verification of imper-
ative programs written in an imperative-functional language shallowly embedded
(using monads) in the term language of the Coq proof assistant. Although the
programs must be written in this ML-like Cog-embedded language, which is

significantly less convenient that a standalone programming language, a tool is
provided that translates these programs into ML or Haskell. Proofs may use all
of the power of Coq, but strong tactics are provided that automate common
proof steps.

Larch [12] is an approach for the formal specification of program modules. In
the Larch approach, a module specification is in the form of a module signature
of the programming language, annotated with preconditions and postconditions
written in the Larch Behavioral Interface Specification Language (BISL). In
these annotations, one can refer to mathematical types and operators defined
in the Larch Shared Language (LSL), including inductive datatypes and recur-
sive functions over them. The Larch system includes the Larch Prover, a proof
assistant for proving theorems about LSL theories; however, the system is for
specification only; verification is outside its scope, and no verification tool is
provided.

The Ld4.verified project [14,17] proved the correspondence of a microkernel
implemented in C with a high-level abstract specification of the microkernel’s
complete behavior. To verify that the model and the C code have the same be-
havior, they parsed the C code into an Isabelle/HOL embedding of C, and then
interactively proved the correspondence theorem in the Isabelle/HOL proof as-
sistant. While proving properties using VeriFast is more convenient than through
the interface of a proof assistant, the property proved by the L4.verified project
is stronger than what can currently be expressed conveniently in VeriFast’s spec-
ification language.

The specification and proof approach centered around inductive definitions
was adopted from the Coq proof assistant [5].

VeriFast is powered by the excellent SMT solver Z3 [8].

6 Conclusion

We propose a program verification approach that allows rich properties to be
verified through interactive insertion of annotations into the source code. Anno-
tations include inductive datatypes, structural-recursive functions, and recursive
spatial predicates for expressiveness, lemma routines for proof power, precondi-
tions and postconditions for specification, and loop invariants and ghost com-
mands for aiding the proof. The verification approach facilitates diagnosis of
failed verification attempts, and, combined with its good performance, enables
a convenient interactive annotation insertion experience.

We are validating the approach in various application areas, including fine-
grained concurrent data structures, device drivers, and smart card applets; initial
results are encouraging.

The primary area of future work is in increasing the degree of automation, by
investigating ways to infer ghost commands, loop invariants, routine contracts,
and lemma applications and implementations.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming

system: An overview. In CASSIS, 2004.

Patrick Baudin, Jean-Christophe Filliatre, Claude Marché, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C specification language.
Bernhard Beckert, Reiner Hahnle, and Peter H. Schmitt. Verification of Object-
Oriented Software: The KeY Approach. Springer, 2007.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO, 2006.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Springer, 2004.

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. Effective interactive proofs for higher-order imperative programs. In
ICFP, 2009.

Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and Wolfram
Schulte. VCC: Contract-based modular verification of concurrent C. In ICSE,
2009.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In TACAS,
2008.

. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for

program checking. Journal of the ACM, 52(3), 2005.

Dino Distefano and Matthew Parkinson. jStar: Towards practical verification for
Java. In OOPSLA, 2008.

Cormac Flanagan, K. Rustan, M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In PLDI, 2002.
John V. Guttag, James J. Horning with S.J. Garland, K.D. Jones, A. Modet,
and J.M. Wing. Larch: Languages and Tools for Formal Specification. Texts and
Monographs in Computer Science. Springer-Verlag, 1993.

Bart Jacobs, Jan Smans, and Frank Piessens. Verifying the composite pattern
using separation logic. In SAVCBS, 2008.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel.4: Formal verification
of an OS kernel. In SOSP, 2009.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06-rev28,
Department of Computer Science, Iowa State University, 2005.

John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, 2002.

Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock,
and Michael Norrish. Mind the gap: A verification framework for low-level C. In
TPHOLs, 2009.

Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of
linked data structures. In PLDI, 2008.

